681 research outputs found

    Small heat-shock proteins: important players in regulating cellular proteostasis

    Get PDF
    Small heat-shock proteins (sHsps) are a diverse family of intra-cellular molecular chaperone proteins that play a critical role in mitigating and preventing protein aggregation under stress conditions such as elevated temperature, oxidation and infection. In doing so, they assist in the maintenance of protein homeostasis (proteostasis) thereby avoiding the deleterious effects that result from loss of protein function and/or protein aggregation. The chaperone properties of sHsps are therefore employed extensively in many tissues to prevent the development of diseases associated with protein aggregation. Significant progress has been made of late in understanding the structure and chaperone mechanism of sHsps. In this review, we discuss some of these advances, with a focus on mammalian sHsp hetero-oligomerisation, the mechanism by which sHsps act as molecular chaperones to prevent both amorphous and fibrillar protein aggregation, and the role of post-translational modifications in sHsp chaperone function, particularly in the context of disease.SM was supported by a Royal Society Dorothy Hodgkin Fellowship, HE is supported by an Australian Research Council Future Fellowship (FT110100586) and JC is supported by a National Health and Medical Research Council Project Grant (#1068087)

    Therapeutic Kitchens in Dementia Care Settings

    Get PDF
    Therapeutic kitchens, also referred to as country kitchen, domestic kitchens, or activity-based kitchens, have been cited as supportive spaces for residents with dementia. The purpose of this research is to identify physical features that are typically included in therapeutic kitchen design and to explore how these features support activities. Interviews and observation were conducted in the facilities with a therapeutic kitchen. A two-page questionnaire regarding therapeutic kitchens was distributed to 631 nursing homes and assisted living facilities throughout the United States. Results suggest that universal design principles, certain appliances and safety features, as well as homelike imagery, should be incorporated in therapeutic kitchen design.https://dc.uwm.edu/caupr_mono/1013/thumbnail.jp

    Leadership and Race: How to Develop and Support Leadership that Contributes to Racial Justice

    Get PDF
    This report explores the ways in which our current thinking about leadership often contributes to producing and maintaining racialized dynamics, and identifies a set of core competencies associated with racial justice leadership. Recommendations are included for helping leadership programs develop and support leadership that furthers racial justice in organizations, communities, and the broader society

    Bio-Security Proficiencies Project for Beginning Producers in 4-H

    Get PDF
    Improving bio-security practices among 4-H members who raise and show project animals is important. Bio-security measures can reduce the risk of disease spread and mitigate potential health and economic risks of disease outbreaks involving animal and zoonotic pathogens. Survey data provided statistical evidence that the Bio-Security Proficiencies Project for Beginning Producers in 4-H advanced youth participants\u27 knowledge and skills related to bio-security and financial risk management. Furthermore, the project provided youth with opportunities to apply their understanding and abilities to authentic settings and extend their learning to their communities

    Period-doubling behavior in frontal polymerization of multifunctional acrylates

    Get PDF
    Front dynamics in the frontal polymerization of two multifunctional acrylate monomers, 1,6-hexanediol diacrylate (HDDA) and trimethylolpropane ethoxylate triacrylate (TMPTA), with Lupersol 231 [1,1-di(t-butylperoxy)-3,3,5-trimethylcyclohexane] as the initiator, are studied. In most frontal polymerization systems, the dynamics are associated with a planar front propagating through the sample. However, in some cases, front behavior can be altered: the front becomes nonplanar characterized by complex patterns like spin modes and pulsations. To determine how these periodic and aperiodic modes arise, reactant solutions consisting of HDDA diluted with diethyl phthalate (DEP) and TMPTA diluted with dimethyl sulfoxide (DMSO) were used in the study. In the study we reveal frontal behavior characteristic of period-doubling behavior, a doubling of spin heads that degenerate into an apparently chaotic mode. Also, a pulsating symmetric mode has been observed. These observations have a striking similarity to observations made in studies of self-propagating high-temperature synthesis (SHS) in which the addition of an inert diluent afforded a rich variety of dynamical behavior. The degree of cross-linking has also been found to be a bifurcation parameter. The energy of activation of multifunctional acrylate polymerization is a strong function of the degree of polymerization. By adding a monoacrylate (benzyl acrylate: BzAc), such that the front temperature was invariant, we observed a period-doubling bifurcation sequence through changes in the energy of activation, which has not been previously reported. © 1999 American Institute of Physics

    Estimating the global burden of Epstein–Barr virus‑related cancers

    Get PDF
    Background: More than 90% of the adult population globally is chronically infected by the Epstein–Barr virus (EBV). It is well established that EBV is associated with a number of malignancies, and advances in knowledge of EBV-related malignancies are being made every year. Several studies have analysed the global epidemiology and geographic distribution of EBV-related cancers. However, most have only described a single cancer type or subtype in isolation or limited their study to the three or four most common EBV-related cancers. This review will present an overview on the spectrum of cancers linked to EBV based on observations of associations and proportions in the published literature while also using these observations to estimate the incidence and mortality burden of some of these cancers. Method: We have reviewed the literature on defining features, distribution and outcomes across six cancers with a relatively large EBV-related case burden: Nasopharyngeal carcinoma (NPC), Gastric carcinoma (GC), Hodgkin lymphoma (HL), Burkitt lymphoma (BL), Diffuse large B-cell lymphoma (DLBCL) and Extranodal NK/T-cell lymphoma, Nasal type (ENKTL-NT). We retrieved published region-specific EBV-related case proportions for NPC, GC, HL and BL and performed meta-analyses on pooled region-specific studies of EBV-related case proportions for DLBCL and ENKTL-NT. We match these pooled proportions with their respective regional incidence and mortality numbers retrieved from a publicly available cancer database. Additionally, we also reviewed the literature on several other less common EBV-related cancers to summarize their key characteristics herein. Conclusion: We estimated that EBV-related cases from these six cancers accounted for 239,700–357,900 new cases and 137,900–208,700 deaths in 2020. This review highlights the significant global impact of EBV-related cancers and extends the spectrum of disease that could benefit from an EBV-specific therapeutic

    Water desalination using a temperature gradient

    Get PDF
    A new concept for reverse osmosis is identified based on the use of a temperature gradient instead of pressure. When the temperature of the permeate-side of the membrane is higher than the feed-side then a significant driving force exists for water transport, which can overcome the osmotic pressure. The thermodynamics for this approach are developed within the paper, and as a result we have developed a single expression for driving force across a membrane for variable temperature, pressure and concentration. The thermodynamic predictions suggest for seawater a temperature difference of less than 1 o C is needed to overcome the osmotic pressure, and less than 3 o C to sustain a water flux equivalent to current reverse osmosis processes. Experimental investigation confirmed the temperature-dependence of water flux and the ability to carry out reverse osmosis at atmospheric pressure. The effect of temperature gradient and salinity on water flux was tested at ambient pressures and found to be in good agreement with the manufacturer-quoted permeability. The concept identified in this work has the potential to allow reverse osmosis to be carried out without the need for costly high pressure pumps and energy recovery systems, with energy requirements predicted to be lower than 2.0 kWh/m 3

    Exploring the potential of grass feedstock from marginal land in Ireland: Does marginal mean lower yield?

    Get PDF
    peer-reviewedThe production of biomass feedstock from marginal land has attracted much attention as a means of avoiding conflict between the production of food and fuel. Yield potentials from marginal lands have generally not been quantified although it is generally assumed that lower biomass yields can be expected from marginal lands. A three year study was conducted in Ireland in order to determine if grass yields of perennial rhizomatous grasses (cocksfoot, tall fescue, reed canary grass, festulolium) for anaerobic digestion from three marginal land sites (very wet site, very dry site, site prone to flooding) could match yields from better soils. Randomised complete block designs were established on each site in 2012 with two varieties of each grass species as treatments. Three grass harvests were taken from each site in 2013 and in 2014. There was no significant difference between yields from the control site and those from the very dry site and the site prone to flooding. Biomass yields from the very wet site were 85% of those from the control site. Highest yields were obtained from festulolium which were significantly higher than yields from perennial ryegrass. An energy analysis showed that maximising the production of grass from low lying mineral marginal grassland in Ireland could provide enough energy to meet the energy requirements of both the private car fleet and the heavy goods vehicle fleet while avoiding conflict with food production which could be concentrated on conventional land

    Small heat-shock proteins: important players in regulating cellular proteostasis

    Get PDF
    Small heat-shock proteins (sHsps) are a diverse family of intra-cellular molecular chaperone proteins that play a critical role in mitigating and preventing protein aggregation under stress conditions such as elevated temperature, oxidation and infection. In doing so, they assist in the maintenance of protein homeostasis (proteostasis) thereby avoiding the deleterious effects that result from loss of protein function and/or protein aggregation. The chaperone properties of sHsps are therefore employed extensively in many tissues to prevent the development of diseases associated with protein aggregation. Significant progress has been made of late in understanding the structure and chaperone mechanism of sHsps. In this review, we discuss some of these advances, with a focus on mammalian sHsp hetero-oligomerisation, the mechanism by which sHsps act as molecular chaperones to prevent both amorphous and fibrillar protein aggregation, and the role of post-translational modifications in sHsp chaperone function, particularly in the context of disease
    • …
    corecore